绝对值教案

时间:2025-08-30 09:31:19
绝对值教案

绝对值教案

在教学工作者开展教学活动前,就有可能用到教案,教案是保证教学取得成功、提高教学质量的基本条件。教案应该怎么写才好呢?以下是小编精心整理的绝对值教案,欢迎大家借鉴与参考,希望对大家有所帮助。

绝对值教案1

教学目标

1.知识与技能

会利用绝对值比较两个负数的大小.

2.过程与方法

利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力.

3.情感、态度与价值观

敢于面对数学活动中的困难,有学好数学的自信心.

教学重点难点

重点:利用绝对值比较两个负数的大小.

难点:利用绝对值比较两个异分母负分数的大小.

教与学互动设计

(一)创设情境,导入新课

投影 你能比较下列各组数的大小吗?

(1)│-3│与│-8│ (2)4与-5 (3)0与3

(4)-7和0 (5)0.9和1.2

(二)合作交流,解读探究

讨论交流 由以上各组数的大小比较可见:正数都大于0,0都大于负数,正数都大于负数.

思考 若任取两个负数,该如何比较它的大小呢?

点拨 若-7表示-7℃,-1表示-1℃,则两个温度谁高谁低?

【总结】 两个负数,绝对值大的反而小,或说,两个负数绝对值小的反而大.

注意 ①比较两个负数的大小又多了一种方法,即:两个负数,绝对值大的反而小.

②异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑先比较它们的绝对值.

③在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:左边的数总比右边的数要小.即:利用数轴来比较有理数的大小.

绝对值教案2

教学目标:

1、知识与技能:

(1)借助数轴理解相反数的概念,会求一个数的相反数。

(2)培养学生观察、猜想、验证等能力,初步形成数形结合的思想。

2、过程与方法:

在教师的指导下,让学生通过观察、比较,归纳出相反数的概念和性质。

重点、难点

1、重点:理解相反数的意义,会求一个数的相反数。

2、难点:对相反数意义的理解。

教学过程:

一、创设情景,导入新课

1、请两位同学背靠背,一个向左走5步,另一个向右走5步,如果向右走为正,向左、向右分别记作什么?(生答:+5、-5),+5与-5这样成对出现的数就是为们今天要学习的相反数。

二、合作交流,解读探究

1、(出示小黑板)

教师提出问题:上图中数轴上的点B和点D表示的数各是什么?有什么关系?

学生活动:分小组讨论,与同伴交流。

教师活动:请几位同学说出他们讨论的结果,指出点B表示+2.6,点D表示-2.6,它们只有符号不同,到原点的距离都是2.6。

2、(板书):如果两个数只有符号不同,那么我们将其中一个数叫做另一个数的相反数,也称这两个数互为相反数。

0的相反数是0。

3、学生活动:

在数轴上,表示互为相反数的两个点有什么关系?

学生代表回答后,小结:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。

4、练习填空:

3的相反数是;-6的相反数是;-(-3)=;-(-0.8)=;

学生活动:在练习本上解答,并与同伴交流,师生共同订正。

归纳:化简多重符号时,一个正数前不管有多少个“+”号,都可全部省去不写;一个数前有偶数个“-”号,也可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号。

三、应用迁移,巩固提高

1、课本P10第1题。

2、填空:

(1)xx的相反数是;(2)xx的相反数是;(3)xx的相反数是2/3。

3、如果一个数的相反数是它本身,则这个数是。

4、若α、β互为相反数,则α+β= 。

5、-(-4)是的相反数,-(-2)的相反数是。

6、化简下列各数的符号

-(-9)=; +(-3.5)= ;

-=;-{-[+(-7)]}= 。

7、若-x=10,则x的相反数在原点的侧。

8、若x的相反数是-3,则;若x的相反数是-5.7,则。

四、总结反思

本节课学习了相反数的意义,并认识了相反数在数轴上的特征,数a的相反数是-a,0的相反数是0,在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。

五、课后作业

课本P13习题1.2A组第3、4题。

绝对值教案3

【学习目标】

1.使学生能说出相反数的意义

2.使学生能求出已知数的相反数

3.使学生能根据相反数的意思进行化简

【学习过程】

【情景创设】

回忆上节课的情境,小明从学校出发沿东西大街走了0.5千米,在数轴上表示出他的位置。点A,点B即是小明到达的位置。

观察A,B两点位置及共到原点的距离,你有什么发现吗?

《数轴》专题练习

1.(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:

A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.

(1)将5个队按由低分到高分的顺序排序;

(2)把每个队的得分标在数轴上,并标上代表该队的字母;

(3)从数轴上看A队与B队相差多少分?C队与E队呢?

《2.4数轴》同步测试

1下列说法中错误的是(  )

A.一个正数的绝对值一定是正数

B.任何数的绝对值都是正数

C.一个负数的绝对值一定是正数

D.任何数的绝对值都不是负数

22017·海安县期中绝对值大于2且不大于5的整数有________个.

3某检修小组乘坐一辆汽车沿公路检修供电线路,约定前进为正,后退为负,他们从出发到收工返回时,走过的路程记录如下(单位:km):+5,-3,+7,-1,-4,+8,-12.求他们从出发到收工返回时,总共行驶的路程.

绝对值教案4

一、知识与技能

(1)借助数轴初步理解绝对值的概念,能求一个数的绝对值。

(2)通过应用绝对值解决实际问题,体会绝对值的意义和作用。< ……此处隐藏10679个字……>

5、画一条数轴,在数轴上分别标出绝对值是6,1。2,0的数

6、计算:

五、探究学习

1、某人因工作需要租出租车从A站出发,先向南行驶6Km至B处,后向北行驶10Km至C处,接着又向南行驶7Km至D处,最后又向北行驶2Km至E处。

请通过列式计算回答下列两个问题:

(1)这个人乘车一共行驶了多少千米?

(2)这个人最后的目的地在离出发地的什么方向上,相隔多少千米?

2、写出绝对值小于3的整数,并把它们记在数轴上。

六、小结

一头牛耕耘在一块田地上,忙碌了一整天,表面上它在原地踏步,没有踏出这块土地,但我们说,它付出了艰辛和汗水,因为它所走过的距离之和,有时候我们是无法想象的。这就是今天所学的绝对值的意义所在。所以绝对值是不考虑方向意义时的一种数值表示。

七、布置作业

做作业本中相应的部分。

绝对值教案15

一、教学目标:

1、掌握绝对值的概念,有理数大小比较法则。

2、学会绝对值的计算,会比较两个或多个有理数的大小。

3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。

二、教学难点:

两个负数大小的比较。

三、知识重点:

绝对值的概念。

四、教学过程:

(一)设置情境。

1、引入课题。

星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正:

(1)用有理数表示黄老师两次所行的路程。

(2)如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

2、学生思考后,教师作如下说明:

实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关。

3、观察并思考:

画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。

4、学生回答后,教师说明如下:

数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。

例如,上面的问题中|20|=20,|-10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。使学生体验数学知识与生活实际的联系。因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。

(二)合作交流。

1、探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?

-3,5,0,+58,0.6。

2、要求小组讨论,合作学习。

3、教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页)。

(三)巩固练习:教科书第15页练习。

1、其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别。求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例。 学生能做的尽量让学生完成,教师在教学过程中只是组织者。本着这个理念,设计这个讨论。

2、结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:

(1)把14个气温从低到高排列。

(2)把这14个数用数轴上的点表示出来。

3、观察并思考:

(1)观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?应怎样比较两个数的大小呢?

(2)学生交流后,教师总结:

14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。

4、想象练习:

想象头脑中有一条数轴,其上有两个点,分别表示数-100和-90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系。要求学生在头脑中有清晰的图形。让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。

数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。

5、课堂练习例2,比较下列各数的大小。(教科书第17页例)

比较大小的过程要紧扣法则进行,注意书写格式。

6、练习:第18页练习。

(三)小结与作业。

课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?

(四)本课作业。

1、必做题:教产书第19页习题1,2,第4,5,6,10

2、选做题:教师自行安排。

五、本课教育评注(课堂设计理念,实际教学效果及改进设想)。

1、情景的创设出于如下考虑:

(1)体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣。

(2)教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受。

2、一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

3、有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,帮助学生建立数轴上越左边的点到原点的距离越大,所以表示的数越小这个数形结合的模型。为此设置了想象练习。

4、本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

《绝对值教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式