《比的基本性质》说课稿

时间:2025-09-08 05:38:18
《比的基本性质》说课稿

《比的基本性质》说课稿

作为一名辛苦耕耘的教育工作者,通常需要准备好一份说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。写说课稿需要注意哪些格式呢?以下是小编收集整理的《比的基本性质》说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

《比的基本性质》说课稿1

我今天说课的题目是《不等式的基本性质》,主要分四块内容进行说课:教材分析;教学方法的选择;学法指导;教学流程。

一、教材分析:

1.教材的地位和作用

本节课的内容是选自人教版义务课程标准实验教科书七年级下第九章第一节第二课时《不等式的基本性质》,这是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想。是初中数学教学的重点和难点,对进一步学习一次函数的性质及应用有着及其重大的作用。

2.教学目标的确定

教学目标分为三个层次的目标:

⑴知识目标:主要是理解并掌握不等式的三个基本性质。

⑵能力目标:培养学生利用类比的思想来探索新知的能力,扩充和完善不等式的性质的能力。

⑶情感目标:让学生感受到数学学习的猜想与归纳的思维方式,体会类比思想和获得成功的喜悦。

3.教学重点和难点

不等式的三个基本性质是本节课的中心,是学生必须掌握的内容,所以我确定本节的教学重点是不等式三个基本性质的学习以及用不等式的性质解不等式。本节课的难点是用不等式的性质化简。

二、教学方法、教学手段的选择:

本节课在性质讲解中我采取探索式教学方法,即采取观察猜测---直观验证---托盘实验---得出性质。使学生主动参与提出问题和探索问题的过程,从而激发学生的学习兴趣,活跃学生的思维。为了突破学生对不等式性质应用的困难,采取了类比操作化抽象为具体的方法来设置教学。整节课采取精讲多练、讲练结合的方法来落实知识点。

三、学法指导:

鉴于七年级的学生理解能力和逻辑推理能力还比较薄弱,应以激励的原则进行有效的教学。鼓励学生一种类型的题多练,并及时引导学生用小结方法,克服思维定势。

例题讲解采取数形结合的方法,使学生树立“转化”的数学思想。充分复习旧知识,使获取新知识的过程成为水到渠成,增强学生学习的成就感及自信心,从而培养浓厚的学习兴趣。

四、(主要环节)教学流程:

1.创设情境,复习引入

等式的基本性质是什么?

学生活动:独立思考,指名回答.

教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式.

请同学们继续观察习题:

观察:用“”或“”填空,并找一找其中的规律.

(1)55+2____3+2,5-2____3-2

(2)–1,-1+2____3+2,-1-3____3-3

(3)6>2,6×5____2×5,6×(-5)____2×(-5)

(4)–2(-2)×6____3×6,(-2)×(-6)____3×(-6)

学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误.

五、教法说明

设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备.

不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的性质.

学生活动:观察思考,猜想出不等式的性质.

教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.”

师生活动:师生共同叙述不等式的性质,同时教师板书.

不等式基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.

对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?

学生活动:观察③④题,并将题中的5换成2,-5换成一2,按题的要求再做一遍,并猜想讨论出结论.

六、教法说明

观察时,引导学生注意不等号的方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?为什么?

师生活动:由学生概括总结不等式的其他性质,同时教师板书.

不等式基本性质2不等式两边都乘(或除以)同一个正数,不等号的方向不变.

不等式基本性质3不等式两边都乘(或除以)同一个负数,不等号的方向改变.

师生活动:将不等式-2<3两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.

学生活动:看课本第124页有关不等式性质的叙述,理解字句并默记.

强调:要特别注意不等式基本性质3.

实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.

学生活动:思考、同桌讨论.

归纳:只有乘(或除以)负数时不同,此外都类似.

(1)如果x-54,那么两边都可得到x9

(2)如果在-78的两边都加上9可得到

(3)如果在5-2的两边都加上a+2可得到

(4)如果在-3-4的两边都乘以7可得到

(5)如果在80的两边都乘以8可得到

师生活动:学生思考出答案,教师订正,并强调不等式性质的应用.

2.尝试反馈,巩固知识

请学生先根据自己的理解,解答下面习题.

例1 利用不等式的性质解下列不等式并用数轴表示解集.

(1)x-7>26(2)-4x≥3

学生活动:学生独立思考完成,然后一个(或几个)学生回答结果.

教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确.

七、教法说明

解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力.

(四)总结、扩展

本节重点:

(1) ……此处隐藏27633个字……学设计,如有不当之处敬请各们老师批评指正。

《比的基本性质》说课稿14

一、教材简析和教材处理

1.教材简析

《分数的基本性质》是九年义务教育六年制小学数学课本(西师大版)第十册第15-16页的内容。在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。

2.教材处理

以前,教师通常把《分数的基本性质》看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。

二、教学课件设计意图

场景一:故事引人,揭示课题。

有位老爷爷把一块地分给三个儿子。老大分到了这块地的三分之一,老二分到了这块地的六分之二。老三分到了这块的九分之三。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

让学生发表自己的意见,教师出示三块大小一样的纸,通过师生折、观察和验证,得出结论:三兄弟分得的一样多。

一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。

场景二:发现问题,突出质疑。

既然三兄弟分得的一样多,那么表示它们分得土地的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。

3.引入新课:下面算式有什么共同的特点?学生回答后

它们各是按照什么规律变化的呢?场景三:比较归纳,揭示规律。

1.出示思考题。

比较每组分数的分子和分母:

(1)从左往右看,是按照什么规律变化的?

(2)从右往左看,又是按照什么规律变化的?

让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。

2.集体讨论,归纳性质。

(1)从左往右看,由1/4到2/8,分子、分母是怎么变化的?引导学生回答出:把1/4的分子、分母都乘以2,就得到2/8。原来把单位“1”平均分成4份,表示这样的1份,现在把分的份数和表示份数都扩大2倍,就得到2/8。

(2)3/4是怎样变化成9/12的呢?怎么填?学生回答后填空。

(3)引导口述:3/4的分子、分母都乘以2,得到6/8,分数的大小不变。

(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。

(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都乘以相同的数,分数的大小不变。

(6)对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?

出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步走向结论。]

3.出示例2:把3/4和15/24化成分母是8而大小不变的分数。

思考:要把3/4和15/24化成分母是8而大小不变的分数,分子怎么不变?变化的依据是什么?

通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。

如:

[有助于学生顺利地运用分数与除法的关系,以及整数除法中商不变性质说明分数的基本性质,实现新知化归旧知。]

场景四:多层练习,巩固深化。

1.口答。

学生口答后,要求说出是怎样想的?

2.判断对错,并说明理由。

运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。

3.在下面()内填上合适的数。

练习设计由易到难,由浅入深,既巩固新知,又发展思维,其间还自然地渗透思想品德教育。师生对出数做题,能够创设民主和谐的学习气氛。通过举例,还渗透了函数思想。

《比的基本性质》说课稿15

尊敬的评委、老师们:

大家好!

我今天说课的内容是:苏教版小学数学六年级下册第三单元例4《比例的基本性质》,下面我将从教材、教法、学法、教学过程、板书设计几个方面进行分析。

一、教材

本节教材是在初步理解了比的意义和性质、比例意义的基础上进行教学的,同时又是后面解比例的基础。根据以上分析,我把本课教学目标设计为:

(1)知识和技能目标:使学生认识比例的各部分名称,理解并掌握比例的基本性质。

(2)过程和方法目标:使学生主动经历自主探索、合作交流的过程,通过观察、分析、推理等思维活动来探究比例的基本性质;培养学生的归纳、概括和探究能力。

(3)情感和价值观目标:使学生在探索比例的基本性质的过程中,进一步体会不同领域数学内容知识之间的联系。

由此,我确定本节的教学重难点是理解并掌握比例的基本性质。

教具准备:多媒体

二、教法、学法

“教师是学生学习的组织者、引导者、合作者”根据这一理念,我遵循了“激—导—探—放”的原则,引导学生利于已有的知识基础,采用观察分析、猜测验证、运用迁移等教学方法组织教学。

自主探索与合作交流是学生学习数学的重要方式。因此我引导学生通过操作、观察、思考等方式促使学生多种感官参加,激发学生兴趣。

三、教学过程

立足于学生的学及本节课的教学目标,我将教学过程设计为四个环节:

(一)复习旧知,导入新课。

(二)自主探究、合作交流。

(三)巩固练习,拓展应用。

(四)总结反思,提升认识。

《《比的基本性质》说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式